Loading...

目录

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
.
├── LAVIS
│ ├── CODEOWNERS
│ ├── CODE_OF_CONDUCT.md
│ ├── LICENSE.txt
│ ├── MANIFEST.in
│ ├── README.md
│ ├── SECURITY.md
│ ├── app
│ ├── assets
│ ├── bert-base-uncased
│ ├── bert.zip
│ ├── coco14
│ ├── dataset_card
│ ├── docs
│ ├── evaluate.py
│ ├── examples
│ ├── lavis
│ ├── output
│ ├── projects
│ ├── pyproject.toml
│ ├── requirements.txt
│ ├── run_scripts
│ ├── salesforce_lavis.egg-info
│ ├── setup.py
│ ├── tests
│ ├── train.py
│ └── vg
└── opt-2.7b
├── README.md
├── config.json
├── flax_model.msgpack
├── generation_config.json
├── merges.txt
├── pytorch_model.bin
├── special_tokens_map.json
├── tf_model.h5
├── tokenizer_config.json
└── vocab.json

第一阶段

1
2
3
4
5
python 
-m torch.distributed.run
--nproc_per_node=1
--master_port=2564 train.py
--cfg-path lavis/projects/blip2/train/pretrain_stage1.yaml

配置文件如下:lavis/projects/blip2/train/pretrain_stage1.yaml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
model:
arch: blip2
model_type: pretrain
load_pretrained: False #pretrain from scratch
freeze_vit: True


datasets:
coco_caption:
vis_processor:
train:
name: "blip2_image_train"
image_size: 224
text_processor:
train:
name: "blip_caption"
# build_info:
# images:
# storage: '/sqy/LAVIS/coco14/images/'
vg_caption: # name of the dataset builder
vis_processor:
train:
name: "blip_image_train"
image_size: 224
text_processor:
train:
name: "blip_caption"
# build_info:
# images:
# storage: '/sqy/LAVIS/vg/images/'

run:
task: image_text_pretrain
# optimizer
lr_sched: "linear_warmup_cosine_lr"
init_lr: 1e-4
min_lr: 1e-5
warmup_lr: 1e-6

weight_decay: 0.05
max_epoch: 3
batch_size_train: 2
batch_size_eval: 1
num_workers: 4
warmup_steps: 5000

seed: 42
output_dir: "/cyb/LAVIS/output/BLIP2/Pretrain_stage1"

amp: True
resume_ckpt_path: null

evaluate: False
train_splits: ["train"]

device: "cuda"
world_size: 1
dist_url: "env://"
distributed: True

opt

targets:
tensor([[ -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,
-100, -100, -100, -100, -100, -100, -100, -100, -100, -100,
-100, -100, -100, -100, -100, -100, -100, -100, -100, -100,
-100, -100, 2, 627, 8146, 16, 4204, 50118, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,
-100, -100, -100, -100, -100, -100, -100, -100, -100, -100,
-100, -100, -100, -100, -100, -100, -100, -100, -100, -100,
-100, -100, 2, 397, 3931, 8492, 19, 20744, 50118]],
device=‘cuda:0’)