1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
| Namespace(T=4, device='cuda:0', b=256, epochs=64, j=8, data_dir='/datasets/FashionMNIST/', out_dir='./logs', resume=None, amp=True, cupy=True, opt='sgd', momentum=0.9, lr=0.1, channels=128) CSNN( (conv_fc): Sequential( (0): Conv2d(1, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False, step_mode=m) (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, step_mode=m) (2): IFNode( v_threshold=1.0, v_reset=0.0, detach_reset=False, step_mode=m, backend=cupy (surrogate_function): ATan(alpha=2.0, spiking=True) ) (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False, step_mode=m) (4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False, step_mode=m) (5): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, step_mode=m) (6): IFNode( v_threshold=1.0, v_reset=0.0, detach_reset=False, step_mode=m, backend=cupy (surrogate_function): ATan(alpha=2.0, spiking=True) ) (7): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False, step_mode=m) (8): Flatten(start_dim=1, end_dim=-1, step_mode=m) (9): Linear(in_features=6272, out_features=2048, bias=False) (10): IFNode( v_threshold=1.0, v_reset=0.0, detach_reset=False, step_mode=m, backend=cupy (surrogate_function): ATan(alpha=2.0, spiking=True) ) (11): Linear(in_features=2048, out_features=10, bias=False) (12): IFNode( v_threshold=1.0, v_reset=0.0, detach_reset=False, step_mode=m, backend=cupy (surrogate_function): ATan(alpha=2.0, spiking=True) ) ) ) Mkdir ./logs/T4_b256_sgd_lr0.1_c128_amp_cupy. Namespace(T=4, device='cuda:0', b=256, epochs=64, j=8, data_dir='/datasets/FashionMNIST/', out_dir='./logs', resume=None, amp=True, cupy=True, opt='sgd', momentum=0.9, lr=0.1, channels=128) ./logs/T4_b256_sgd_lr0.1_c128_amp_cupy epoch =0, train_loss = 0.0325, train_acc = 0.7875, test_loss = 0.0248, test_acc = 0.8543, max_test_acc = 0.8543 train speed = 7109.7899 images/s, test speed = 7936.2602 images/s escape time = 2022-05-24 21:42:15
Namespace(T=4, device='cuda:0', b=256, epochs=64, j=8, data_dir='/datasets/FashionMNIST/', out_dir='./logs', resume=None, amp=True, cupy=True, opt='sgd', momentum=0.9, lr=0.1, channels=128) ./logs/T4_b256_sgd_lr0.1_c128_amp_cupy epoch =1, train_loss = 0.0217, train_acc = 0.8734, test_loss = 0.0201, test_acc = 0.8758, max_test_acc = 0.8758 train speed = 7712.5343 images/s, test speed = 7902.5029 images/s escape time = 2022-05-24 21:43:13
...
Namespace(T=4, device='cuda:0', b=256, epochs=64, j=8, data_dir='/datasets/FashionMNIST/', out_dir='./logs', resume=None, amp=True, cupy=True, opt='sgd', momentum=0.9, lr=0.1, channels=128) ./logs/T4_b256_sgd_lr0.1_c128_amp_cupy epoch =63, train_loss = 0.0024, train_acc = 0.9941, test_loss = 0.0113, test_acc = 0.9283, max_test_acc = 0.9308 train speed = 7627.8147 images/s, test speed = 7868.9090 images/s escape time = 2022-05-24 21:42:16
|